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We reformulate the Kirkwood-Ramakrishnan-YussoutT theory of freezing into the 
standard mean field structure of phase transition theory. This approach is then applied to 
the order-disorder transition in colloidal crystals, where one is dealing with purely 
repulsive electrostatic interactions. The results are shown to be: 1) roughly consistent 
with the form of the Lindemann criterion; 2) consistent with the Alexander-McTague 
condition for freezing into a bcc structure; 3) in close quantitative agreement with recent 
molecular dynamics calculations. 
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1 INTRODUCTION 

The present study is one in a series of papers'-3 concerned with the 
properties of the phase diagram of colloidal suspensions of charged 
spheres. Elsewhere' we have discussed the justification for using a 
repulsive Yukawa interaction to model such systems and the relation- 
ship between the model parameters and the underlying physical proper- 
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208 S. ALEXANDER et al. 

ties of the particles and solvent. We have also considered melting in the 
local self-consistent harmonic approximation’ and the fcc-bcc phase 
b ~ u n d a r y , ~ . ~  using the same interactions. Later, Shih and Stroud4 
considered the ordering transition of this model using a Lindemann 
criterion, with emphasis on the finite size effects which become impor- 
tant at elevated concentrations. This paper is concerned with the mean 
field description of the solidification of a fluid with repulsive Yukawa 
interactions at constant density. We look at the problem within the 
framework of theories which relate solidification to the instability of the 
disordered liquid phase, an approach first enunciated by Kirkwood’ 
and more recently employed by Ramakrishnan and Yussouff (referred 
to below as RY; we also speak of the KRY theory in recognition of 
Kirkwood’s original central contribution). We attempt to determine the 
freezing curve. Because of the relatively simple interaction and the large 
range of accessible coupling strength, core hardness and density, 
colloidal crystals are, we believe, particularly attractive systems for 
testing theories of solidification. We predict a phase diagram as a 
function of physically accessible parameters over a large range. We also 
reformulate the mean field theory of Ramakrishnan and Yussouff6 in a 
form more closely patterned on standard mean field theories and 
emphasize the underlying physical assumptions. Our formulation has 
substantial computational advantages which should be useful in appli- 
cation to other problems. 

Our discussion of the liquid-solid transition is made within the 
framework of the RY model. The order parameters for this problem are 
the structure factors S(G) at the reciprocal lattice wave vectors G 
associated with the assumed solid structure. In principle one has to 
minimize the free energy with respect to these order parameters. Since 
the transition is first order, the ordered solid phase is always locally 
stable when it exists. Thus, one has to compare the solid and liquid free 
energies explicitly (at constant volume or at constant pressure) to 
determine the phase boundaries. 

We are interested in calculating a phase diagram over a wide range of 
physical parameters. It is therefore useful to cast the theory into a form 
which is computationally convenient and makes it easy to see where the 
approximations are made. We therefore have found it useful to refor- 
mulate the KRY approach in a structure more closely patterned on 
those used in solving self consistent mean field equations for other 
problems. 

The idea that one can treat freezing as a density instability of the 
isotropic liquid goes back to Landau. In the Landau expansion for the 
free energy the order parameters are the structure factors for the 
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FREEZING OF COLLOIDS 209 

reciprocal lattice stars of the solid,7 and their choice is therefore 
determined by the space group of the solid. The properties of the liquid 
show up through the expansion parameters and therefore, to leading 
order, the direct correlation function of the liquid. This approach is, 
however, not suitable for calculating a phase diagram. One needs up to 
fourth order terms in the order parameters in order to describe this first 
order transition, and the corresponding coefficients in the free energy 
are not available. Moreover, large numbers of order parameters (many 
reciprocal lattice vectors) would enter importantly. 

Kirkwood first noticed instabilities in his expressions for the liquid 
correlation functions and was able to use this to obtain a liquid and a 
solid phase within one coherent calculational scheme. More recently 
Ramakrishnan and Yussouff constructed a theoretical mean field 
scheme which explicitly describes solidification as an instability of the 
liquid. As in the familiar Weiss molecular field theory they consider the 
response of the liquid density to an externally imposed periodic 
potential of suitable symmetry. The procedure is then made self- 
consistent by using the direct correlation functions of the liquid to 
calculate the potential resulting from this density change. RY express 
this procedure in a density functional formalism, which has also been 
used in subsequent related papers to deal with a variety of physical 
phenomena. These include not only the freezing of hard sphere8-'' and 
Lennard-Jones fluids," and their elastic moduli,12 but also liquid-solid 
 interface^,'^ the phases of adsorbed layers of rare gases,I4 the glass 
t ran~i t ion, '~  and the stability of icosahedral quasicrystals. l 6  We have 
found it more conducive to conceptual clarity and simplicity to use a 
formulation which is directly analogous to those used in mean field 
theories for magnetic problems. We also make some other approxima- 
tions, which show up in a slightly different way in our formulation than 
in those of others. Specifically: 

a) We make use of the Fourier components of the effective mean field 
potential, rather than those of the particle density, as the independent 
order parameter variables. The implications of this choice for separa- 
tion of structural and dynamical features of the problem and, particu- 
larly, for the rate of convergence of the results with the number of order 
parameters included, are discussed in detail in Section 11-A below. 

b) We truncate the density functional expansion of the potential in 
the liquid, 

V(r) = dr'Cl(r, r')p(r') + dr'dr"C,(r, r', r")p(r')p(r") + ... (1-1) s s 
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210 S. ALEXANDER er al. 

at the lowest level. This is equivalent to treating the direct correlation 
function of the liquid Cl(r, r’) as an effective two particle interaction. 
This allows us to derive a variational form for the free energy difference 
between the liquid and solid at constant density. Some such truncation 
or similar approximation is also inevitable in practice. 

c) We calculate directly the difference in solid and liquid free energies 
at the freezing point, which avoids the elaborate integration of the free 
energy as a function of relevant parameters inherent in the usual 
Maxwell construction (see the discussion following Eq. (111-6)). 

d) We treat the density change at the transition in a different way. 
RY introduce a three particle correlation function (C,) representing the 
density dependence of the free energy and of the C ,  in the expansion of 
V(r) above. This considerably complicates the solution of the self- 
consistency equations. Our alternative procedure is to calculate the 
solid free energy at constant density (in the RY approximation). One 
can then read off the constant pressure coexistence curve, if desired, 
from the density dependence of the solid and liquid free energies (see the 
end of Section 111). 

II MEAN FIELD EQUATIONS 

A Structure of the Equations 

Consider a classical particle in an external potential u(r). The probabi- 
lity of finding the particle at r is 

(11-1) 

(11-2) 

and V is the volume of the system. This is the density which minimizes 
the free energy, -(log [ ) / f i .  For an interacting system the energy is 

E = - drdr’b(r)b(r’)U(Ir - r’l), 
NZ 2 s 

where 

ND(r) = 1 6 ( r  - Ri), 
i 

(11-3) 

(11-4) 

and V(r) is the interparticle interaction-assumed, as usual, to be 
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FREEZING OF COLLOIDS 21 1 

pairwise additive. One can define a local potential felt by a given 
particle (taken here to be the one labeled by i = 1): 

u(r, R,) = dr’[Nb(r’) - 6(r’ - R,)]U(lr - r’l) (11-5) 

The conditional single particle density p(r, R,, . . . , R,) is then still given 
by Eq. (11-1). A standard mean field theory results from the neglect of 
all correlations, so that p no longer depends on the specific positions 
{Ri) of the other particles, but only on their average values as expressed 
by p itself: 

s 

b(r) --+ p(r> (11-6) 

u(r) = N dr’U(r - r’)p(r’). (11-7) s 
This is equivalent to truncating the hierarchy of n-particle correlation 

functions at the single particle level. The free energy is then minimized 
when p(r) obeys the self-consistency Eq. (11-1), with u(r) given by 
Eq. (11-7). Within the approximation scheme of Eqs. (I1-6,11-7) the free 
energy is given by 

BF,, = - N In i - (NP/2) J p(r)u(r)dr, (11-8) 

which becomes extremal when the self-consistency Eqs (11-1) hold. 

within the Hilbert space given by the ansatz 
The mean field procedure is equivalent to a variational calculation 

n 

~ n ( r l ,  * - * > rn) = JJ p(ri)* (11-9) 

for the n-particle correlation functions p., for all n. Self-consistent 
theories resulting from decoupling at the level of some higher correla- 
tion functions are not unique and cannot be related to a variational 
principle in the same way. In the Appendix we show the relationship to 
other mean field theories by discussing a lattice gas model. 

This mean field scheme is obviously completely useless in a theory of 
liquids, because it neglects all particle-particle correlations. With the 
normalization we have used the liquid is always described simply by 

i =  1 

p( r )  = 1 w >  (11-10) 

with corresponding higher order correlation functions also constant, by 
Eq. (11-9). Thus theories of liquids always use decoupling schemes more 
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212 S. ALEXANDER et al. 

complex than Eq. (11-9), ones which include at least explicit two particle 
correlations (or equivalent approximations). One can, however, con- 
struct an a priori mean field theory for the solid. Fourier transformation 
of Eq. (11-1) gives 

(11-1 1) 

These functions B(q) play the role of Brillouin functions in the 
corresponding Weiss Molecular Field Theory of magnetism.’ We can 
further write directly and simply the Fourier components of the 
potential in terms of the p(q) from Eq. (11-7): 

where 

Bu(r) = -C l(q)e-iq.r (11-1 3a) 
q 

(TI-13b) 

For a crystal only reciprocal lattice vectors (q = G) show up, and the 
equations for all G belonging to the same star are equivalent. 

We can use Eq. (11-12) to eliminate either the p(G) or the ( (G)  from 
the fundamental Eq. (11-1 1). In principle the two procedures are, of 
course, equivalent. They would yield the same result if the equations 
were to be solved for all reciprocal lattice vectors G. But in practice 
there are two advantages in choosing to eliminate the density compo- 
nents p(G) in favor of the effective interaction ((G).  The first point is 
formal. The variational free energy [Eq. (IT-8)] and the self-consistent 
solutions (g,} depend explicitly on the physical variables-i.e., on the 
(average) particle density ( N / V ) ,  the temperature @-’), and the as- 
sumed form of the interaction fiU(r). Nevertheless, with the choice of 
[ (G) as independent variables the “Brillouin functions” { B(G)} defined 
in Eq. (11-1 1) are universal functions of their arguments and depend 
only on the assumed space group. The specific physical parameters then 
only appear on the left hand side of Eq. (11-1 1) (after substitution of 
l (G)  for p(G) through Eq. (11-12)). As in the magnetic analog, it is 
simpler to have this dependence on BU(r) appear in the trivial linear 
term of the left hand side of Eq. (11-1 1). This separation of geometrical 
and dynamical features is an important simplification inherent to this 
formulation. 
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FREEZING OF COLLOIDS 213 

The second point concerns the convergence of the results when only a 
few Fourier components G are included. We point out that u(G) is again 
the natural choice of independent variable since, for the cases in which 
we are interested, the short range interaction V(r)  has rapidly decreas- 
ing Fourier components as IGI grows. The interaction u(r) will share 
this feature (see Eq. (11-7)). The same is not true of the density: 
p(G) = {(G)/U(G),  the ratio of the two potentials. But note that with 
only the small number of significant components { (G)  (those for small 
IGl) we can from Eq. (11-1) obtain a sensible approximation to p(G) for 
all G .  Moreover, the density p(r) so calculated will necessarily be 
positive. In contrast, Mohanty and Jones’ discovered that p(r) became 
negative for some regions when they restricted themselves to a few 
Fourier components G in p(G). They therefore abandoned the Fourier 
space representation in favor of a configuration space approach, at  the 
expense of additional approximations and complications. The problem 
does not arise when the <(G) are used as the fundamental variables. 

It may be helpful to restate this important feature from an alternative 
viewpoint. With the density components p(G) as the fundamental 
quantities one needs to solve the underlying equations for many values 
of G. But, in the end, the larger values of G will make little contribution 
to the potential v(r). Clearly it is calculationally preferable to work 
directly with the few important Fourier components of the potential, 
W). 

B Incorporation of Liquid Correlations 

In this form the mean field equations give a variational expression for 
the solid free energy (at constant density) with respect to a completely 
uncorrelated reference state, described by Eqs (11-9, lo), which is ob- 
viously very different from the liquid. Since all short range correlations 
have to be described explicitly by the { ( (G) } ,  one also expects poor 
convergence. The idea of Ramakrishnan and Yussouff6 is to avoid this 
difficulty by starting from the liquid state, which already has many 
short range correlations established, rather than from the ideal (uncor- 
related) gas. This means that one replaces the bare potential, U(r), in 
Eq. (11-7) by the direct correlation function of the liquid c(r) = Cl(r, 0) 
(see Eq. (I-1)), defined by: 

6u(r) w - c(r - r’)8p(r’)d3r’. (11-14) I 
Thus, the direct correlation function describes the (linear) response of 
the fluid to a local density perturbation. It is equivalent to using the 
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214 S. ALEXANDER et al. 

wavevector dependent compressibility of the fluid in response to an 
imposed periodic potential. The direct correlation function is related to 
the liquid structure factor S(q) by: 

c(q) = 1 - S-’(q). (11-15) 

We shall follow this procedure and replace Eq. (11-1 1) by 

t(q)/c(q) = B(q). (11-16) 

In principle, the direct correlation function c(q) could be obtained by 
liquid state elastic scattering experiments. Instead, we shall use the 
results of a hypernetted chain calculation with a Yukawa potential for 
c(q), which, as Schaefer has shown,I8 describes the observed liquid 
structure factors reasonably well. 

It is important to emphasize, however, that this introduction of the 
direct correlation function as an effective interaction involves serious ad 
hoc approximations, which are not derived either from a variational 
principle (on the true free energy) or by a controlled systematic 
expansion. The solutions can be derived by a variational principle for 
the Ramakrishnan-Yussouff free energy functional (RYFEF), for inde- 
pendent single particle densities, in the usual way. This functional, in 
which the direct correlation function of the liquid replaces the bare two- 
body interaction, is taken to represent the difference between the liquid 
and solid free energies. This seems to be a reasonably good approxima- 
tion, judging from the results obtained. It  is made particularly attractive 
by the empirical observation” that the first peak in the liquid structure 
factor S(q)  has a universal height at freezing. There is, however, no 
formal justification for the approximation involved in interpreting the 
RYFEF in this way. Indeed, the use of the direct correlation function as 
an effective interaction is inappropriate for large 6p(r); in the end one 
relies on the physical assumption that the solid, at melting, is not too 
different from the liquid. Whatever the defects of and legitimate 
objections to this approach may be, however, its great advantage is that 
it is relatively straightforward and calculationally feasible, it allows a 
ready intuitive interpretation, and it gives many results in good accord 
with observations. 

It has been suggested by RY,6 and more recently by Oxtoby and 
collaborators,” that one could improve the accuracy of this approach 
by including higher order correlations of the liquid, making use of the 
full density functional expansion” of the free energy of the liquid. 
Structurally, this modification would result in the appearance of 
nonlinear terms in the expansion of p(q) in the <(q) on the left hand side 
of Eq. (11-16). But the higher order correlation functions of the liquid 
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FREEZING OF COLLOIDS 215 

are not known and are not reliably computable (nor directly measur- 
able experimentally), in contrast to the two particle correlation function 
c(r). We would suggest, therefore, that such an approach is of little 
practical value (as, indeed, one’s experience with the Bethe cluster 
approximation in magnetism confirms in that instance). Moreover, we 
doubt that it would really represent an improvement even if it were 
feasible, since a mean field theory must be reasonably simple to be of 
value. 

The only thing that has really been done in Refs. (6) and (20) with 
those higher order correlations is to formally incorporate the density 
change into the self-consistency equations. It is equivalent and, we feel, 
more convenient to extract the density changes from the constant 
density free energies, as discussed in Section 111. 

111 SOLUTION OF THE SELF-CONSISTENCY EQUATIONS 

The transition from the isotropic liquid to the solid involves a sym- 
metry change from the full translation-rotation group to a structure 
with a specific Fedorov-Schonfliess space group. The order parameter 
for such a transition is then associated with the reciprocal lattice 
corresponding to the relevant configuration space structure. The densi- 
ty of the solid is described by 

p(r> = p(G)AG(r), (111-1) 
G 

where the summation is over the magnitudes G of the reciprocal lattice 
vectors, and the A,(r) are the crystallographic structure factors, 

, (111-2) = 1 ei(Gi.r+ai) 

i 

which are listed in the International Tables for  X - r a y  Crystallo- 
graphy.” There are important symmetry relations between the phases 
a;. We have discussed this from a somewhat different point of view 
el~ewhere.’~ For our purposes, the essential point is that the A,(r) are 
determined by the crystal structure. Thus it is only the amplitudes p(G), 
corresponding to each of the reciprocal lattice stars (indexed by the 
magnitudes GZ4), that must be determined from the mean field Eqs 
(11-13) and (11-16). Then for a given structure we may write 

(111-3) 
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216 S. ALEXANDER et al. 

where the index “s” indicates the dependence on the assumed lattice 
structure, and ((G) is defined analogously to p(C) in Eq. (111-1) (see also 
Eq. (111-7) below). The self-consistency equation is then 

(111-4) 

where n: is the number of distinct reciprocal lattice vectors in the star of 
G. The free energy expression (11-8) becomes 

which vanishes in the disordered state [[(G) = 01. We note that (111-4) 
and (111-5) are equivalent to (11-1 1) and (11-8), except for the use of the 
direct correlation function c(r) as an effective interaction here. 

At constant volume a first order transition is predicted when there 
are solutions of (111-4) with ((G) # 0 for which F ,  vanishes. The latent 
heat can be determined from (111-5). As we have emphasized repeatedly, 
(111-4) is analogous to the mean field equation for the ferromagnetic 
transition, with BG playing the role of the Brillouin function. Here BG is 
a nonlinear function not of a single order parameter (the uniform 
magnetization), but of the whole set of Fourier components of the 
density, or equivalently, the effective potential { [ (G)} ,  at reciprocal 
lattice vectors. In the simplest case of a single dominant order param- 
eter [(Go), with Go near the first peak of the liquid structure factor, the 
self-consistency condition (111-4) can be graphically represented as in 
Figure la. As compared with the magnetic case in Figure l b  we 
emphasize that the characteristic sigmoidal shape of the function 
B[t (C, ) ]  gives a first order transition, with finite [(Go) at the transition 
point. The thermodynamic parameters enter only through the slope of 
the straight line (n/Bc from the left hand side of Eq. (111-4)). The 
condition for freezing (at constant density) is 

F,CS(G)I = F,(O) = 0, (111-6) 

since F is measured from the liquid reference state (5  = 0). In Figure l a  
this condition can be determined from a Maxwell construction. This is 
the procedure used by RY.6 It requires an accurate computation of the 
whole curve BsG as a function of 5 and becomes prohibitively complex if 
one wants to use several tG. This can be greatly simplified, however, by 
reasonable approximations. Instead of using this Maxwell construction 
it is sufficient to find the solid (5: # 0) solutions and then to compute F ,  
(Eq. (111-5)) explicitly to find when (111-6) is obeyed. The calculation is 
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FREEZING OF COLLOlDS 217 

X 

Figure 1 Graphical solution of the self-consistency equation for (a) the present freezing 
problem, as given by Eq. (111-4) (here plotted for the single parameter theory, with 
B(c)  oc exp(-A/c), and (b) the magnetic transition in mean field theory, with B,(x) the 
usual Brillouin function (here plotted for S = 1). The solution is marked by a filled circle 
in each case. The free energies are equal when the areas marked 1 and 2 are equal (the 
Maxwell construction). 

particularly easy, not only because one now needs BG(SG) only at a 
single point cG, rather than as a complicated function of its argument, 
but because the needed value of SG is large (since we are dealing with the 
solid phase), and a simple saddle point approximation to the calcula- 
tion becomes accurate, as we now show. 

First note that the exponent in [, (Eq. (111-3)), 

(111-7) 
G 

is a periodic function with extrema at the lattice points (for simple 
lattices). Therefore, the spatial integrals may be restricted to a single 
Wigner-Seitz cell centered at a lattice site. Furthermore, the empirical 
Lindemann criterion ensures that rms fluctuations from lattice posi- 
tions are no more than about 10 percent at melting. This is equivalent 
to saying that, for the values of the C c  which describe the solid, the 
contribution to the integrals in B"(q) mainly comes from the vicinity of 
the lattice points; p(r) = e"')/V[ becomes very small before r reaches 
the Wigner-Seitz cell boundary. It is therefore reasonable to expand 
((r) about its minimum and then disregard the zone boundaries. 

For the cubic Bravais lattices one has 

&(r) = C eci.r, (111-8) 
i 

P.C.L. H 
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21 8 S. ALEXANDER et al. 

and to lowest order, 

L ( r )  c" S(G)nS,C1 - (GrI2/61. (111-9) 
G 

The integrals can now be evaluated. First, calculating 5, [Eq. (111-3)], 
we obtain 

- 312 

t(G)nLGz/6] exp c" [((G)n;], (111-10) 
G 

where u, is the volume of the Wigner-Seitz cell. Similarly, direct 
evaluation of Bs(ij) yields 

(111-1 1) 

Thus the Bs((q) have a Debye-Waller structure and decrease rapidly for 
large q. Then, substituting (111-10) into (111-5), we have 

(111-12) 

where 

u, = a,. 3 (111- 13) 

Finally, from (111-4) and (111-1 1) we have 

(111-14) 

These are our basic equations. 
Two points should be noted. First, in evaluating the integrals we have 

assumed that at least some of the ((G) are large. The expressions are 
therefore not valid for small deviations-i.e., in the limit <(G) + 0. 
Indeed, it is clear that the expression (111-10) for 5, does not have the 
proper limit [ = 1. The second point is a little more delicate. We have 
evaluated Bs(q) directly from the integral expression (11-1 3), making use 
of the approximation (111-9). Alternatively, we could have calculated 
BS(q) from the logarithmic derivative of is, given by Eq. (111-10). These 
two procedures do not lead to the same result. They are equivalent only 
to lowest order in the expansion of the exponential in Eq. (111-11). It 
seems clear from the argument which justified (111-9) that the De- 
bye-Waller expression (111-1 1) should be used in this limit. 
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One can now solve Eqs (111-14) self consistently with F ,  = 0 from 
(111-12) for a small number of ( ( G ) .  At least in principle, (111-14) can 
then be used as a consistency check for the { ( G )  retained. 

The formalism we have developed so far determines the liquid-solid 
phase boundary at constant density. The transformation to constant 
pressure is standard. If one wants to consider the solid free energy as a 
function of density ( p , )  one has 

@ S ( P S )  = @,(PA + F s ( P s ) ,  (111- 15) 

where @&) is the liquid free energy, and one notes that F ,  (Eq. (111-12)) 
only measures the change from the liquid at constant density. Thus the 
phase boundary is given by 

F h J  = @ L ( P L )  - @ L ( P ~ )  (111-16a) 

(I1 I- 16b) 

where p L  is the liquid density, and P is the pressure. The calculation of 
dF,/dV obviously includes the density dependence of the c(G). Equa- 
tions (111-16) replace the constant density condition Fs = 0. When 
expanded in the density charge they are equivalent to the density 
dependence found in Refs (6) and (1 3) in a different way. 

In the following we restrict ourselves to freezing at constant density, 
using Eq. (111-6). 

IV FREEZING CURVE 

We now apply our basic Eqs (111-12) and (111-14) to determine the 
freezing curve for classical particles interacting via a Y ukawa potential, 
as is appropriate for the charged colloid.’ The KRY theory6 involves an 
arbitrarily large number of order parameters, { (G) .  However, as Ra- 
makrishnan and Yussouff show explicitly for several atomic systems, 
excellent results are obtained by retaining only two order parame- 
ters-the two smallest reciprocal lattice vectors. The fact that larger G’s 
tend to diminish in importance is associated with the fact that the 
effective “susceptibility” c( G )  has an envelope which rapidly becomes 
small. We shall follow this approach and carry out a two order 
parameter theory investigating solidification into both bcc and fcc 
lattices. This process is carried out in two steps. First, for a given lattice 
we find solutions of Eq. (111-14) which yield a set of amplitudes { ( ( G ) }  
as functions of the “susceptibilities” { c ( G ) } .  Then, requiring that at the 
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first order freezing transition the relative free energy F, (111-12) vanishes 
yields a hypersurface (of dimension p - 1, where p is the number of 
order parameters considered) in {c(G)} space. We next take our 
calculated structure factor S(G) and construct a {c(G)} hypersurface 
which is a functional of the interaction potential, interaction range, and 
temperature. We then search for the values of physical parameters-e.g. 
temperature-where the two hypersurfaces intersect. For example, a 
one parameter theory, which corresponds to the density amplitude 
associated with the star of the smallest reciprocal lattice vectors, would 
yield a transition when the first peak in the liquid structure factor 
reached a certain value So = (1 - c0)- ' .  This procedure would provide 
a derivation of Verlet's'' empirical rule that freezing occurs when So is 
in the range 2.8-3.1. For freezing into a bcc structure RY6 find So = 3.4, 
which descends to 3.2 when corrected for finite bulk compressibility. 
Our approximate evaluation of the B(G) integrals yields So = 4.5, 
which is to be compared to 3.4. Let us discuss this calculation explicitly. 

A One Parameter Theory 

In order to illustrate the simplicity of carrying out these calculations 
once the approximations made in the last section are utilized, we shall 
carry through the one parameter theory for assumed solidification into 
a bcc phase. The reciprocal lattice is fcc,  with the first zone star having 
n: = 12 vectors of the form (2n/a)( 4 1, k 1,O) and cyclic permutations. 
The Brillouin function (111-1 1) is then simply B(G) = 12 exp[ - 1/(8t)], 
or using (111-4), 

c = t exPC+ 1/(8<)17 (IV-1) 

where we have suppressed the argument (C) (equivalently, this result 
follows directly from Eq. (111-14)). 

Setting F, = 0 in Eq. (111-1 2), we find a second relation between c and 
t: 

c- l  = [l2i; - 1.5 ln(16nt) + In 2]/(6t2). (IV-2) 

Combining (IV-1) and (IV-2), we find 5 = 0.64 and c = 0.78, which 
yields So = 4.5. 

If we attempt a similar calculation for an assumedfcc structure, there 
is no solution for c < 1. [Note from (11-9) that physical values of c must 
be less than unity.] This implies (within this one parameter approxima- 
tion) the absence of a freezing transition to a face centered structure. 
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B Two Parameter Theory 

Because freezing is a first order transition to a state with particles 
localized near lattice sites, more than one Fourier component of the 
density distribution is required to yield a reasonable description. On the 
other hand, in the liquid state, the structure factor has an envelope 
which decays with increasing wavevector, with superimposed peaks 
near integral multiples of k, = (24a3,  where the particle number 
density is as-3. Thus, as RY6 point out, for the second density 
component in a two order parameter theory the optimum response 
would be for the reciprocal lattice vector 1 G' I which is nearest in length 
to 2k, .  For the hcc and fcc structures these are, respectively, (24a)  
(1, 1,2) and (27rla) (1, 1,3), where a is the side of the real space lattice 
cube. 

The calculation proceeds along the same lines as outlined above for 
the one parameter theory, with only some algebraic complications. The 
Brillouin function B(G) is calculated from Eq. (111-1 1) for each of the 
two reciprocal lattice vector stars Go and G, and inserted into the two 
corresponding self-consistency relations (1114) (resulting in the Eq- 
s (111-14) for those wave vectors). The free energy (111-12) is set equal to 
zero. These three equations for the four unknowns C(G,), <(G,), 
c(Go) = co, and c ( G , )  E c1 then yield a set of solutions which, e.g., trace 
out a curve in the co, c1 plane. To this point the information used has 
been only structural. To find the point on the curve where the freezing 
transition is predicted to occur for a given system with specific 
interactions we must calculate the response coefficients co and c1 (or the 
closely related structure factors S(G) as functions of the relevant 
thermodynamic parameters for that system. This is done for the 
Yukawa interaction, 

(Ze)' U(r) = __ C -- ~ 

exp[ - Ic(r - ri)] 
E Ir - riI 9 (IV-3) 

(where E is the static dielectric constant of the medium and Ze  the 
electric charge per particle), in Figure 2, within the hypernetted chain 
approximation," the simplest approximation known to be reasonably 
accurate for soft core potentials. We find that, although the individual 
values of c, and c1 change with reduced temperature T* = 
k,T(Z2e2rc/E)-' and screening parameter us, for a given c, the 
corresponding value of c1 is virtually independent of these parameters. 
This second relation between co and c1 is consistent with the earlier one 
only for the values c, = 0.595 and c1 = 0.190 for the bcc lattice. Since 
the fcc curve lies always above that for bcc, freezing is predicted to 
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I' ' I " I " I c I  I I ' '  ' I I - 1  

0 

0 

A 
h 

Figure2 Solution of the freezing equation within the two parameter theory, with 
co = c(G,) and c 1  = c (G, )  the direct correlation function components at reciprocal lattice 
vectors Go and GI. The self-consistency equations at F,  = 0 give the circles (filled for the 
bcc lattice and open for fcc). The triangles give values of c,, and c1 consistent with the 
hypernetted chain approximation for the Yukawa potential, Eq. (IV-3). 

occur to the latter, as first suggested by Alexander and M c T a g ~ e ~ ~  for 
weakly first order freezing transitions. The values of T* and ~ a ,  
consistent with the values co = 0.595 and c I  = 0.190 which we have 
found trace out the predicted freezing curve. The semilogarithmic plot 
of 1/T* vs. KU, of Figure 3 is nearly a straight line. Roughly speaking, 
this implies the approximate validity of the Lindemann criterion for 
melting, in that the energy (dominated by an exponential dependence 
exp( - K R ) )  is proportional to the temperature. 

In the same figure we have compared the predictions for freezing with 
the resultsz6 of molecular dynamics calculations. The remarkable 
extent of quantitative agreement is surely partly fortuitous. Again the 
linear behavior implies the approximate validity of the Lindemann 
criterion. 
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was 

Figure 3 Reduced melting temperature, (T*)-'  = Z2e2K/(ek,Tm), as a function of 
dimensionless screening parameter K O ,  (where as-3 = p is the particle density). The filled 
circles are the results of the present (two parameter) calculation; the solid line was 
obtained from the molecular dynamics calculations of Ref. 26. 
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Appendix Lattice gas representation 

It is somewhat surprising that the self-consistency equations relevant to 
solidification are qualitatively different from those usually found for 
lattice gas or magnetic models. In this appendix we wish to show that a 
systematic lattice gas theory is indeed possible and leads to equations of 
the form used in Section 11. 

Consider a lattice gas defined by an interaction U(R). The energy is 

1 
E = -c V(R, - 

2 i , j  

where n, = 0,l. If one does not wish the density to be determined by the 
lattice, a repulsive core [irr U(R)] with a range much larger than the 
lattice spacing may be assumed. Then the ground state will have a very 
low density on the lattice, 

(nil Q 1.  (A21 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
6
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



FREEZING OF COLLOIDS 225 

The effect on the free energy may be seen by considering a canonical 
ensemble, 

N = 1 n i ,  
i 

The partition function is 

It is now convenient to convert to a local field representation by a 
Hubbard-Stratonovich transformationXX, replacing the n, by their 
conjugate potentials u i :  

2 = D[oi]K[oi] exp s 
So far this is exact. The crucial point is the treatment of the nonlinear 
kernel, 

In magnetic transitions one is interested in states for which ( n i )  x 1, 
and one expands in a lattice product: 

K x n (1 + e-B"i). (A7) 

This leads to the usual form of the Brillouin function. In the present 
freezing problem, in contrast, one is concerned with situations where 
( n i )  4 1. It is then better to write 

i 

which becomes exact in the limit (n) + 0. The summation in (A8) is 
over all lattice sites, and the occupation probability of these sites, (n,), 
goes to zero when the lattice is made dense at constant N and constant 
V(r). The difference between (AS) and (A6) is of order (n). If we define 

( = 1 ,-put, (A91 
i 

this leads to 

z = D [ u , ] [ ~  exp - C v i v j U i i l  S [: i j  ] 
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for the partition function. A steepest descent calculation for the free 
energy yields 

P 
2 ti 

-PF % N In + - C vivjUij ' ,  

as in Eq. (11-8). 
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